RIAPS
Resilient Information Architecture Platform for Smart Grid
The Energy Revolution: Big Picture

From centralized to decentralized and distributed energy systems

RIAPS Vision

Microgrid Control Problem

Applications:
- F & V Restoration
- Load Shedding
- Fault Transition Scheme (FTS)

In Islanded Mode
- Protection
- Inlanding Detection
- μ-grid Membership

In Grid-Connected Mode
- Resynchronization
- Islanded Outage
- μ-grid Membership
- Int. Islanding

Needs
Fault-tolerant, distributed controller that interacts with local inverters, loads, and grid operators

Source: NCSU/S. Lukic

System Impedance: 0.0075 + j0.1851 p.u.

Source: NCSU/S. Lukic

Needs
Fault-tolerant, distributed controller that interacts with local inverters, loads, and grid operators

Source: NCSU/S. Lukic
RIAPS Vision

Microgrid Control Problem

Needs:
Fault-tolerant, distributed controller that interacts with local inverters, loads, and grid systems/operators

Source: NCSU/S. Lukic

System Impedance: $0.0075 + 0.1851 \text{ p.u.}$

LEGEND:
- Protection Device (SEL 751)
- Asset Switch (SEL 751A)
- RIAPS Protection Node
- RIAPS Load Node
- RIAPS DER Node

Bus 1_0

RIAPS Node:
- Computing Platform
- Network I/F
- Sensors
- Actuators

Source: NCSU/S. Lukic
RIAPS Vision

- Push computation and control to the *edge*
- Use a *common* technology stack
- Facilitate the *integration* of heterogeneous devices
- Provide core services to enable the *rapid* development of *smart* apps

Example Power System: IEEE 30 bus system

Control Room
RIAPS Layers

Apps:
- microgrid control
- distributed SCADA
- RAS
- EMS

Linux (with real-time features)

NIC (with IEEE-1588)
What is RIAPS?

- **Distributed Real-time Embedded Computing Platform**
 - Component-based application software architecture
 - Networking/messaging details are transparent to app developers
 - Strictly limited concurrency – well-defined interaction patterns

- **Run-time services**
 - Fault-tolerant, peer-to-peer service discovery
 - High-precision time-synchronization
 - App deployment and management
 - Device encapsulation and management
 - Logging and log management

- **App languages:** Python, C++

- **Resource management**
 - Resource quota monitoring and enforcement

- **Fault-tolerance**
 - Automatic app restart upon failure
 - Automatic network reconnect
 - Peer-to-peer notifications

- **Distributed coordination**
 - Dynamic group communications
 - Leader election, consensus

- **Security**
 - Secure deployment, communications
 - Apps strictly isolated
 - Privileged access to devices

- **Model-driven development tools (IDE)**
Where is RIAPS in the Architecture?

RIAPS is the platform to implement monitoring, control, analytics,... functions at the edge.
Example application - Microgrid Control

https://riaps.isis.vanderbilt.edu/demonstrations.html
Summary

- RIAPS is a platform for building distributed apps for Smart Grids.
- It has been demonstrated with:
 - Microgrid control app
 - Islanding/reconnection, distributed control
 - Remedial action scheme app
 - Generation curtailment and under-frequency load-shedding
 - Transactive energy app
 - Prosumer ‘traders’ buy and sell energy, use a blockchain to record trades
 - ...

https://riaps.isis.vanderbilt.edu/
https://riaps.github.io/
https://github.com/RIAPS
https://www.youtube.com/watch?v=U6P3jPcvkhE

RIAPS was made possible by support from the US DOE ARPA-E
Thank You!